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Abstract: Stimulated Raman scattering (SRS) microscopy is a promising technique for studying
tissue structure, physiology, and function. Similar to other nonlinear optical imaging techniques,
SRS is severely limited in imaging depth due to the turbidity and heterogeneity of tissue,
regardless of whether imaging in the transmissive or epi mode. While this challenge is well
known, important imaging parameters (namely maximum imaging depth and imaging signal
to noise ratio) have rarely been reported in the literature. It is also important to compare epi
mode and transmissive mode imaging to determine the best geometry for many tissue imaging
applications. In this manuscript we report the achievable signal sizes and imaging depths using a
simultaneous epi/transmissive imaging approach in four different murine tissues; brain, lung,
kidney, and liver. For all four cases we report maximum signal sizes, scattering lengths, and
achievable imaging depths as a function of tissue type and sample thickness. We report that
for murine brain samples thinner than 2mm transmissive imaging provides better results, while
samples 2mm and thicker are best imaged with epi imaging. We also demonstrate the use of a
CNN-based denoising algorithm to yield a 40 µm (24%) increase in achievable imaging depth.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coherent Raman microscopy has, over the past decade, established itself as a powerful chemical
imaging technique for characterizing biological systems [1–4]. Similar to spontaneous Raman
microscopy, coherent Raman techniques target the vibrational transitions of endemic biological
molecules (or carefully selected label molecules). Owing to the efficiency of the coherent
excitation processes used in coherent Raman experiments, imaging times are at least 2-3 orders
of magnitude faster than spontaneous Raman experiments, making the technique ideally suited
for high resolution, fast subcellular imaging of tissue samples [2,5]. In particular, stimulated
Raman scattering (SRS) microscopy, a popular variant of coherent Raman microscopy, has
shown great potential in label-free pathology for cancer diagnosis [6–9]. This application
benefits from the chemical contrasts of proteins and lipids and the high sensitivity of C-H
SRS imaging for these species. Many other major applications of coherent Raman microscopy
have also focused on imaging molecules in tissue, including lipids [10], neurotransmitters [11],
and both small molecule [12,13] and isotope labels [14,15]. Nevertheless, coherent Raman
microscopy is severely limited in penetration depth for tissue imaging applications, similar to
many other nonlinear optical imaging techniques such as two-photon fluorescence (TPF) and
second-harmonic generation microscopy.
Understanding the limitations of coherent Raman microscopy in tissue imaging is critically

important to evaluate its potential for a wide range of ex vivo (e.g. intraoperative tumor margin
detection), in vitro (e.g. drug screening), and in vivo (e.g. early cancer diagnosis) applications.
Due to light scattering, it is widely recognized that the signal to noise ratio of coherent Raman
microscopy deteriorates rapidly with imaging depth. Compared to TPF microscopy, imaging
depth of coherent Raman microscopy is typically much less due to inherently much lower
Raman cross-section of molecules. This limitation equally applies to both major variants of
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coherent Raman microscopy: stimulated Raman scattering (SRS) microscopy and coherent
anti-stokes Raman scattering (CARS) microscopy. Both experiments utilize ultrafast laser pulses
to coherently excite vibrational transitions in target molecules. Though their origin of signal and
detection methods differ, both experiments typically operate in either transmission mode (for thin
samples) or epi mode (for thick samples).
Unfortunately, to date there has been scarce report on the penetration depth limit of coherent

Raman microscopy. Those studies which explicitly report the achieved imaging depths of
coherent Raman microscopy in tissue suggest the limit to be around 20 µm – 100 µm [16–20],
with varying tissue types being the cause of the large variance. Additionally, there have been no
reports (to our knowledge) directly comparing the performance of epi and transmissive coherent
Raman imaging in a side-by-side manner. Transmissive imaging is often advantageous in the
case of optically thin samples and epi imaging is the default for optically thick samples (typically
live animals or whole excised tissue). For samples of intermediate optical thickness (for example,
sectioned tissues) there is no clear understanding of which imaging modality will provide the best
results. A better understanding of these fundamental imaging limits and questions surrounding
coherent Raman microscopy is crucial to the continuing development of these techniques as they
continue gaining popularity in the biomedical imaging space.
Here we report a comprehensive study of epi and transmissive SRS signal size and imaging

depth using a variety of ex vivo murine tissues (brain, lung, liver, and kidney). In this work
we begin by characterizing SRS signal size and imaging depth through simultaneous epi and
transmissive imaging of murine brain samples of varying thicknesses. As one would expect,
epi (transmissive) SRS signal size and imaging depth increases (decreases) as tissue thickness
grows, reflecting an increase (reduction) in backscattered (transmitted) photons. When tissue
thicknesses reach 2mm epi and transmissive signal sizes are roughly equivalent, and epi images
provide slightly higher penetration depths than transmissive images. Using this method, we
further characterized three additional tissue types (kidney, lung, and liver), each of which displays
different scattering character reflecting their disparate structures and chemical compositions.
Finally, we applied a recently developed convolutional neural network (CNN) based denoising
algorithm to SRS images and demonstrated the ability to resolve structural features at depths
exceeding 210 µm in epi-imaging of brain, representing a 40 µm increase in imaging depth. We
hope that this work will serve as a useful benchmark for the growing number of experimentalists
entering the SRS microscopy field and a useful source to consult when considering how best to
image a given sample.

2. Methods

2.1. Sample preparation

Murine tissue was harvested from recently sacrificed animals provided by UW Animal Use
Training Services (AUTS) according to IACUC protocol 3388–03. After excision, samples of
varying thicknesses were cut using razor blades with pre-measured spacers (250 µm, 500 µm,
1mm, and 2mm) to ensure accurate and uniform sample thicknesses. In the case of brain imaging,
samples were prepared and imaged at all four thicknesses. Liver, lung, and kidney samples were
all imaged at 1mm thicknesses.

2.2. SRS imaging

SRS images were collected using the homebuilt SRS microscope shown in Fig. 1. The pump
(800 nm) and Stokes (1040 nm) pulses are provided by the tunable and static outputs, respectively,
of a dual output ultrafast oscillator (Insight DeepSee +, SpectraPhysics). The Stokes pulse is
directed through an electrooptic modulator which modulates the 80MHz output pulse train to
20MHz and provides the reference frequency used for lock-in detection. After modulation the
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Stokes pulse is sent onto a delay stage (used to control temporal delay between the pump and
Stokes pulses) and then to a grating stretcher used to impart linear chirp [21]. The delay stage is
used to determine the vibrational frequency images are collected at, and was positioned at the
temporal delay corresponding to 2920 cm−1 for the duration of these experiments. The pump
pulse is directed through 60 cm of H-ZF52A glass to provide similar chirp. The pump and Stokes
pulses are recombined at a dichroic mirror and routed to a set of galvanometer mirrors and finally
into the back aperture of a microscope objective (Olympus XLPLN25XWMP2). Transmitted
probe light is collected by a condenser lens and directed to a photodiode for lock-in detection. In
the epi direction, backscattered and depolarized light is recollected by the focusing objective and
isolated using a polarizing beam splitter. After filtering out residual Stokes light, backscattered
pump photons are sent to a separate photodiode for lock-in detection. Transmissive and epi
images were collected simultaneously for all samples and fields of view. SRS images were
collected using 40mW average power in both the pump and Stokes pulse trains. Each image
samples a 285 µm × 285 µm field of view. All images were collected with an acquisition time of
4 s.

Fig. 1. Home built SRS microscope used for biological imaging. Acronyms defined in
inset.

2.3. Deep learning training and denoising

Deep learning denoising was performed as reported previously [22]. Briefly, SRS images of
murine brain samples were acquired at a depth of ∼20 µm at low power (40mW pump, 2mW
Stokes) and high power (40mW pump, 40mW Stokes) A U-Net deep learning architecture
(publicly available code originally developed by Ounkomol et al. [23] and optimized for this
application) was used to train a denoising algorithm that takes the low power (low SNR) images
as input and predicts a corresponding high power (higher SNR) image of the same field of view
similar to previously reported methods [24,25]. We then use the trained algorithm to denoise
images taken deep in the murine brain at high power where SNR is low due to scattering and
absorption of light in tissue.
The algorithm used here was supplied with 40 fields of view at both low and high power

corresponding to signal and truth respectively. The 40 fields of view were randomly split into
10/30 test/train pairs. The algorithm was then trained over the course of 50,000 epochs using a
learning rate of 0.001 with an Adam optimizer, momentum values of 0.5 and 0.999, and a batch
size of 30 images. Following training, the algorithm was then fed the fields of view acquired
deep in the brain for denoising. Training and denoising were performed on the University of
Washington Hyak Mox supercomputer equipped with an Nvidia P100 graphics processing unit.
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The training session lasted ∼10 hours, while denoising of the test and deep images took ∼0.1
seconds per field of view.

3. Results

3.1. Effects of tissue thickness on epi and transmissive SRS signal sizes and imaging
depths

As mentioned above, murine brain tissue samples were cut to varying thicknesses (250 µm,
500 µm, 1mm, and 2mm) and simultaneously imaged in transmissive and epi geometries.
Throughout each experiment, images were collected down to 240 µm at 5 µm intervals. The DC
(unmodulated) and AC (modulated) portions of the epi and transmissive signal were recorded
as a function of depth. Each measurement was performed in triplicate (on different fields of
view) for each tissue thickness. Samples were prepared to enable imaging of areas with similar
structural features and chemical composition across multiple samples. All brain data discussed
in this manuscript refers to images collected of the cortex.
Transmissive DC signal size (in the form of absolute photocurrent detected) as a function of

depth and tissue thickness is shown in Fig. 2(A). As one may expect, this signal represents total
pump photons detected and the signal size is highest for the thinnest sample (250 µm, black) and
decreases with thickness. Depth-dependent epi DC signal sizes, which increase as a function of
tissue thickness, are shown in Fig. 2(B). The trends observed agree with what one might expect
from thicker tissues enabling more scattering. Differences in the magnitude of the DC signal
between transmissive and epi imaging largely reflect the differing collection efficiencies of the
two imaging modalities.
Maximum recorded AC (SRS) signal sizes follow the same trends as the DC signal sizes for

both transmissive and epi imaging. As expected, thinner samples (< 1mm) yield significantly
higher signals in transmissive mode than epi mode. When samples reach 2mm thick, however,
epi and transmissive signal sizes are functionally identical. Maximum DC and SRS signal sizes
in both epi and transmissive mode are compiled below in Table 1, along with the calculated
modulation depths (the ratio of AC to DC signal) recorded using each imaging modality across
all samples. In principle, the modulation depths recorded using epi and transmissive images
should be identical. However, here we report roughly a factor of two shallower modulation depth
for epi images in thin samples than those recorded in a transmissive geometry. This is possibly
due to the fact that in thin tissue, a larger fraction of detected photons are reflection from the
cover slide or tissue surface.

Table 1. Maximum DC and SRS Signal Sizes as a Function of Tissue Thickness and SRS Imaging
Geometry in Murine Brain Tissue

Thickness
DC Signal,

Trans. (mA)
DC Signal, Epi

(mA)
Max SRS Signal,

Trans. (µA)
Max SRS Signal,

Epi (µA)
SRS Modulation

Depth, Trans.
SRS Modulation

Depth, Epi

250 µm 12.06± 0.44 0.50± 0.04 3.33± 0.16 0.07± 0.01 1.42 × 10−4 6.0 × 10−5

500 µm 8.89± 0.89 0.61± 0.08 2.5± 0.28 0.09± 0.02 1.44 × 10−4 6.89 × 10−5

1 mm 7.26± 0.97 0.67± 0.11 2.44± 0.23 0.13± 0.04 1.60 × 10−4 9.55 × 10−5

2 mm 0.99± 0.01 1.30± 0.14 0.26± 0.10 0.24± 0.03 1.10 × 10−4 9.23 × 10−5

Figures 2(C) and 2(D) show the recovered transmissive and epi SRS signal sizes as a function
of depth, respectively. Unlike the DC signals, SRS signal decreases exponentially as a function
of depth. The exponential decay of each curve can be fit to Eq. (1) to determine tissue scattering
length:

ISRS = Ae
−2z
/Ls (1)
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Fig. 2. DC and SRS signal sizes for epi and transmissive images as a function of brain
tissue thickness. (A) Transmissive DC signal size as a function of depth for four different
tissue thicknesses. (B) Epi DC signal size as a function of depth for four different tissue
thicknesses. (C) Transmissive SRS signal sizes as a function of depth for four different
tissue thicknesses. (D) Epi SRS signal sizes as a function of depth for four different tissue
thicknesses. X’s and lines correspond to three-trial averages while shaded areas correspond
to standard deviations.

where A is maximum signal intensity, z is the depth beneath the surface, and Ls is the effective
scattering length [26]. Scattering lengths recovered from 250 µm, 500 µm, 1mm, and 2mm using
transmissive (epi) imaging are 119.3± 5.4 (104.2± 1.4), 110.3± 1.5 (101.9± 1.2), 105.0± 1.1
(95.7± 1.1), and 91.4± 1.9 (83.8± 1.1), respectively. We note that the exact scattering lengths
generally match the lower end of previously reported range of 90 µm – 120 µm [27,28]. One
likely contribution of low value measured here is the fact that unlike two-photon fluorescence, the
use of two different wavelengths in SRS makes it more susceptible to aberration (both chromatic
and spherical) induced signal degradation. This additional signal decrease with depth manifests
as shorter scattering length. Detailed comparison with literature is further complicated by the
dependence of scattering length on animal age and sample preparation.

3.2. Imaging depth limit of SRS in murine brain

While direct signal size measurements and comparisons are useful from a benchmarking point
of view, the figures of merit in many biological imaging experiments are signal-to-noise ratio
(SNR) and effective imaging depth. For signal to noise measurements the signal value used was
calculated as the mean pixel value of the field of view at a given depth. We chose this approach,
as opposed to using the brightest features in an image to determine signal size, in an attempt to
quantify the depth at which meaningful structural information could be observed. The standard
deviation used in the calculation was the standard deviation of the deepest frame of each image
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stack. This frame was chosen since the negligible amount of SRS signal present at extreme
depths suggests that the standard deviation would be dominated by shot noise as opposed to
heterogeneities in signal magnitude across the field of view, as can be seen in images taken from
shallower depths.

Figure 3 shows plots of epi and transmissive image SNR as a function of depth for four different
tissue thicknesses. Maximum SNR for 250 µm thin tissue is 10 times higher in transmissive
imaging compared with epi-imaging. The achievable imaging depths for transmissive and epi
modalities (defined by the depth at which SNR first falls below 2.0, shown by black dashed lines
in Fig. 3) are 205 µm and 110 µm, respectively. The difference becomes much smaller as tissue
thickness increases. In agreement with the observed trends for both transmissive AC and DC
signal size, maximum SNR and imaging depth decrease with tissue thickness for transmissive
measurements. The maximum SNR for 2mm thick tissue is 4 times lower. The SNR and imaging
depth for the epi geometry follow the same trends seen for epi AC and DC signal sizes as well, in
that they increase as a function of tissue thickness. 2mm thick tissue yields maximum SNR that
is 3 times higher than that in 250 µm thick tissue. Peak SNR and maximum imaging depth values
for all four tissue thicknesses are compiled in Table 2.

Table 2. Epi and Transmissive SRS Image Peak SNR and Imaging Depth for Murine Brain Tissue
Samples of Varying Thickness

Thickness
Peak SRS SNR,
Transmissive

Achieved Imaging
Depth, Trans. (µm)

Peak SRS SNR,
Epi

Achieved Imaging
Depth, Epi (µm)

250 µm 140.6± 19.7 205 14.5± 2.9 110

500 µm 111.0± 29.0 195 17.6± 2.7 120

1 mm 100.5± 34.5 185 27.6± 5.9 125

2 mm 34.8± 2.3 130 41.8± 6.2 135

In the case of thinner samples (250 µm – 1mm) it is unsurprising that peak SNR is so much
lower in epi images than transmission images. Since SRS microscopy is in general a shot-noise
limited experiment, signal will scale as the square root of the average power of the detected pump
pulse [29]. Based solely on the differences between transmission and epi DC signal sizes, thinner
tissues should see a factor of 3.5–5 lower SNR in epi imaging. Here we report peak epi SNRs
which are a factor of 3.7–9.7 lower than their transmission counterparts. This outsized loss of
SNR in epi images can be traced back to the differences between epi and transmissive SRS signal
modulation depths reported in Table 1.
At a thickness of 2mm, however, epi imaging yields a higher peak SNR (41.75 compared to

34.8) and a slightly deeper imaging depth (135 µmcompared to 130 µm) than transmissive imaging.
This reversal of SNR suggests that for brain samples thicker than 2mm, it is advantageous to use
epi imaging. We expect that imaging SNR and penetration depth will further increase in intact
brain due to even higher numbers of backscattered photons.

3.3. Epi and transmissive imaging through different murine tissues

Following analysis of epi and transmissive SRS signals in murine brain tissue, we sought to
gain a better understanding of SRS imaging in additional types of murine tissue. To that end,
simultaneous transmissive and epi imaging experiments were conducted on 1mm thick slices
of murine lung, liver, and kidney tissue. Raw SRS and DC signal sizes in epi and transmissive
modes for each tissue sample are shown in Figs. 4(A) and 4(B), respectively. When compared to
the measurements conducted on 1mm thick murine brain tissue slices, we can see that kidney
and liver tissue yield rather similar transmissive DC signals but roughly half epi DC signals.
Lung tissue, on the other hand, yields a transmissive DC ∼60% lower and an epi DC signal four
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Fig. 3. SNR as a function of depth for murine brain images collected in epi and transmissive
mode from samples of varying thickness. (A) SNR as a function of depth for a 250 µm thick
tissue sample. (B) SNR as a function of depth for a 500 µm thick tissue sample. (C) SNR as
a function of depth for a 1mm thick sample. (D) SNR as a function of depth for a 2mm
thick sample. All curves shown are averages over three fields of view. Shaded areas reflect
standard deviation within those datasets.

to eight times higher than all other studied tissues, suggesting that lung tissue is a much stronger
scatterer than brain, kidney, or liver tissue.

Table 3. Epi and Transmissive Scattering Lengths SRS Image Peak SNR and Imaging Depth for
Various Murine Tissues

Tissue
Ls, Transmission

(µm) Ls, Epi (µm)
Peak SRS SNR,
Transmissive

Peak SRS SNR,
Epi

Achieved
Imaging Depth,

Trans. (µm)

Achieved
Imaging Depth,

Epi (µm)

Kidney 78.8± 0.9 70.5± 1.2 110.1± 11.5 10.1± 1.4 165 65

Liver 84.2± 1.7 77.1± 0.7 136.3± 39.2 13.4± 5.3 170 80

Lung 41.0± 0.8 38.48± 0.7 52.8± 4.8 71.2± 5.2 70 70

Brain 95.7± 1.1 105.0± 1.1 100.5± 34.5 27.6± 6.0 185 120

SRS signal sizes as a function of depth for each of the three tissue types during transmissive and
epi imaging are shown in Figs. 4(C) and 4(D), respectively. To compare the scattering properties
of each tissue type, the signal decay curves were fit with Eq. (1) to determine the scattering
length of photons in each tissue type. The results of the fittings are shown in Table 3. SNRs as
a function of depth for each tissue type were also calculated for each of the three tissue types.
The imaging depths and peak SNRs are shown in Figs. 4(C) and 4(D). For both kidney and liver
tissues, transmissive imaging provided a higher peak SNR than epi imaging, in agreement with
the trends we report above for brain tissue. Transmissive imaging also achieved a significantly
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Fig. 4. Transmissive and epi signal sizes and image SNR as a function of depth for a variety
of murine tissues. (A) Transmissive DC signal size as a function of depth in murine kidney,
lung, and liver tissue. (B) Epi DC signal size as a function of depth in murine kidney, liver,
and lung tissue. Dashed lines reflect fitting to Eq. 1. (C) Transmissive SRS signal size as
a function of depth in murine kidney, lung, and liver tissue. (D) Epi SRS signal size as a
function of depth in murine kidney, liver, and lung tissue. Dashed lines reflect fitting to
Eq. 1.

deeper imaging depth relative to epi imaging for kidney and liver tissues. In the case of lung
tissue, however, epi imaging yielded a higher SNR and comparable imaging depth.

3.4. Deep learning to enhance imaging depth

After comparing the epi and transmission SRS imaging modalities across a variety of murine
tissues, we decided to explore possible avenues to increase the potential imaging depth of SRS
microscopy. To that end, we employed our previously reported CNN-based denoising technique
to determine whether its denoising capabilities would translate into deeper achievable imaging
depths. Figure 5 shows the application of a machine learning denoising algorithm to epi collected
SRS images at various depths. Figures 5A – 5D show data from an epi imaging experiment
imaging a 2mm thick sample of murine brain tissue at 15 µm, 100 µm, 170 µm, and 210 µm
depths respectively. Figures 5(E) – 5(H) show versions of the images shown in Figs. 5(A) – 5(D)
that have been passed through a machine learning based denoising algorithm. While all images
show some improvement over their noisy counterparts, the effect truly becomes significant when
comparing Figs. 5(D) and 5(H). In Fig. 5(D) some distinct features such as nuclei and axons are
visible, but the quality of the image as a whole is quite low. By comparison, Fig. 5(H) shows
significantly more identifiable features and a higher quality image.
With respect to quantitative measurements of quality at these depths, the image shown in

Fig. 5(C) has an SNR of 2.1, which means it represents the maximum imaging depth based
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Fig. 5. Demonstration of CNN-based denoising leading to increases in maximum imaging
depth. (A) Epi SRS image collected at 0 µm depth. (B) Epi SRS image collected at 100 µm
depth. (C) Epi SRS image collected at 165 µm depth, defined as the maximum imaging
depth based on SNR. (D) Epi SRS image collected at 210 µm depth. (E) CNN denoised
version of image in A. (F) CNN denoised version of image in B. (G) CNN denoised version
of image in C. (H) CNN denoised version of image in D.

on the criterion we outline above. For the denoised images, however, SNR as defined above is
not a responsible metric to compare image quality as there is no field void of signal features
post-denoising. Other commonly used metrics such as peak SNR, root mean squared error,
Pearson’s correlation coefficient, and structural similarity index are also not useful here as a
reliable truth image is not available for comparison at this depth of imaging. As such, signal to
background (SBR) is calculated for each image and compared. SBR was chosen as a comparison
metric over SNR because the SNR of images ran through the CNN denoising algorithm were
found to be largely independent of depth. We suspect this is caused by the algorithm adjusting the
average value of the input images to better match the images used in its training, resulting in all
images having very similar SNRs after denoising, regardless of the SNR of the input image. To
calculate SBR, an area of low signal and few features is selected for both the noisy and denoised
image (for example, the dark area in the bottom center of Figs. 5(C) – 5(D) and 5(G) – 5(H)). The
average pixel value of this area is taken to be the background. Then 6 lines spanning the field of
view are selected in the image (3 horizontal and 3 vertical, each set of 3 equally spaced from one
another). The peak pixel value from each of these lines is taken as signal plus background. The
background value is subtracted from the peak value and then divided by the background value to
give SBR. The SBR for the image is the average value from the 6 lines sampled on the image.
We have chosen to use an area average for the background as noisy images (Fig. 6, shown in the
Appendix) have large variance along a sampled line and using the minimum pixel value along
such a line as the “background” will often grossly inflate SBR values for an image.
Using the outlined method for calculating the SBR, Figs. 5(C) – 5(D) exhibit an SBR of 2.6

and 2.3 respectively. After denoising, the same fields of view shown in Figs. 5(G) – 5(H) exhibit
an SBR of 7.2 and 6.4 respectively. Thus, the deep learning denoising used here effectively
improves the SBR of images at the defined limit of image quality by a factor of over 2.5. This
data confirms that deep learning provides a promising avenue in extending the depth limitations
of SRS microscopy. Line plots of the images used in this calculation are provided in Appendix.
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4. Discussion

SRS microscopy is a powerful technique for the characterization of biological samples. When a
transmissive collection is not possible, or the sample is thick enough that transmissive imaging
results in minimal signal collection, an epi imaging geometry offers a viable alternative. The
relative performances of epi and transmissive imaging are, as we demonstrate above, dependent
on many parameters including tissue type and tissue thickness.

In the case of murine brain tissue, we report that tissue samples under 2mm are most effectively
imaged using a transmissive imaging geometry. Samples 2mm or greater in thickness yield
the best results in terms of peak SNR and imaging depth when imaged in an epi geometry.
The threshold for which tissue thickness yields higher SNR in epi mode is strongly dependent
on tissue scattering length. For example, lung tissue (which exhibited the shortest scattering
length of all the interrogated tissues) yielded significantly better images in an epi geometry at a
thickness of just 1mm. We also report significant variation in absolute signal magnitude and
achievable imaging depth between different tissue types, and even between samples of the same
tissue type, demonstrating the role tissue heterogeneity plays in determining imaging quality. We
note that while we only measured one Raman band, tissue scattering length is only a function of
wavelength and tissue composition and thus is independent of which Raman band is imaged.

Finally, we demonstrated the potential utility of CNN-based denoising algorithms towards
achieving deeper maximum imaging depths. An algorithm developed for the purpose of these
experiments was able to denoise images and increase imaging depth from 170 µm to 210 µm
in 2mm thick murine brain tissue samples. This 40 µm increase in imaging depth proves deep
learning based denoising algorithms are poised to play a pivotal role in biological imaging in the
coming years.

There are several other avenues to improve signal size and imaging depth in coherent Raman
imaging that could be explored as well. In our measurements, the maximum pump photons
detected in the epi-direction is <10% of total pump photons. Saar et.al. has shown that using an
annular detector [30] for epi imaging, up to 28% of photons can be collected. In combination with
the polarizing beam splitter-based epi-imaging, it is possible to increase the collection efficiency
by four-fold and sensitivity by two-fold, pushing imaging depth over 250 µm. Of course, this
comes at the cost of additional experimental complexity [30]. Imaging at longer pump/Stokes
wavelengths has also been shown to increase imaging depth in phantom samples due to increased
scattering length, however this approach comes at the cost of SRS signal intensity [31]. The actual
benefit in using long wavelength for tissue imaging warrants further study. Correcting for optical
aberration is another approach that can push the imaging depth even lower. Previous report shows
that coherent Raman signal can be increased by 6-fold in muscle tissue [16], potentially allowing
another increase of over 50-100 µm. Tissue clearing methods can also be used to achieve deeper
imaging depths [20,32], though some methods have been shown to alter the structure of the
cleared tissue [33,34]. However, tissue clearing (with the exception of skull clearing [35]) is
incompatible with live processes and therefore is limited to study of fixed tissue.
In conclusion, we have conducted a comparative study of epi and transmissive imaging

in various types of murine tissue. Throughout this study we have characterized epi and
transmissive imaging efficacy as a function of tissue thickness and tissue type, and we report the
recovered scattering lengths, maximum imaging depths, SNRs, and absolute signal magnitudes.
Additionally, we have shown that CNN-based denoising algorithms can increase the maximum
imaging depth in coherent Raman microscopy experiments, though further experiments are
required to ascertain the quantitative utility of this approach.
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Appendix 1

Fig. 6. Raw and denoised data collected at a depth of 210 µm. (A) Raw image collected at
210 µm deep in the murine cortex. (B) Line plot of area depicted by dashed line in panel
A. Background used in SBR calculation collected from area encompassed by red square.
(C) Denoised image of image A. (D) Line plot of area depicted by dashed line in panel C.
Background used in SBR calculation collected from area encompassed by red square.
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